Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, China, Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China, Shanghai Research Center for Quantum Sciences, Shanghai, China
Abstract:Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
Abstract:Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
Abstract:Reasoning LLMs produce longer outputs, requiring speculative decoding drafters trained on extended sequences. Parallel drafting - predicting multiple tokens per forward pass - offers latency benefits over sequential generation, but training complexity scales quadratically with the product of sequence length and parallel positions, rendering long-context training impractical. We present P(arallel)-EAGLE, which transforms EAGLE from autoregressive to parallel multi-token prediction via a learnable shared hidden state. To scale training to long contexts, we develop a framework featuring attention mask pre-computation and sequence partitioning techniques, enabling gradient accumulation within individual sequences for parallel-prediction training. We implement P-EAGLE in vLLM and demonstrate speedups of 1.10-1.36x over autoregressive EAGLE-3 across GPT-OSS 120B, 20B, and Qwen3-Coder 30B.
Abstract:Despite the impressive reasoning abilities demonstrated by large language models (LLMs), empirical evidence indicates that they are not language agnostic as expected, leading to performance declines in multilingual settings, especially for low-resource languages. We attribute the decline to the model's inconsistent multilingual understanding and reasoning alignment. To address this, we present Pivot-Aligned Self-Feedback Multilingual Reasoning (PASMR), aiming to improve the alignment of multilingual math reasoning abilities in LLMs. This approach designates the model's primary language as the pivot language. During training, the model first translates questions into the pivot language to facilitate better alignment of reasoning patterns. The reasoning process in the target language is then supervised by the pivot language's reasoning answers, thereby establishing a cross-lingual self-feedback mechanism without relying on external correct answers or reward models. Extensive experimental results demonstrate that our method enhances both the model's understanding of questions and its reasoning capabilities, leading to notable task improvements.
Abstract:Graph Neural Networks (GNNs) unlock new ways of learning from graph-structured data, proving highly effective in capturing complex relationships and patterns. Federated GNNs (FGNNs) have emerged as a prominent distributed learning paradigm for training GNNs over decentralized data. However, FGNNs face two significant challenges: high communication overhead from multiple rounds of parameter exchanges and non-IID data characteristics across clients. To address these issues, we introduce CeFGC, a novel FGNN paradigm that facilitates efficient GNN training over non-IID data by limiting communication between the server and clients to three rounds only. The core idea of CeFGC is to leverage generative diffusion models to minimize direct client-server communication. Each client trains a generative diffusion model that captures its local graph distribution and shares this model with the server, which then redistributes it back to all clients. Using these generative models, clients generate synthetic graphs combined with their local graphs to train local GNN models. Finally, clients upload their model weights to the server for aggregation into a global GNN model. We theoretically analyze the I/O complexity of communication volume to show that CeFGC reduces to a constant of three communication rounds only. Extensive experiments on several real graph datasets demonstrate the effectiveness and efficiency of CeFGC against state-of-the-art competitors, reflecting our superior performance on non-IID graphs by aligning local and global model objectives and enriching the training set with diverse graphs.
Abstract:We present STEP3-VL-10B, a lightweight open-source foundation model designed to redefine the trade-off between compact efficiency and frontier-level multimodal intelligence. STEP3-VL-10B is realized through two strategic shifts: first, a unified, fully unfrozen pre-training strategy on 1.2T multimodal tokens that integrates a language-aligned Perception Encoder with a Qwen3-8B decoder to establish intrinsic vision-language synergy; and second, a scaled post-training pipeline featuring over 1k iterations of reinforcement learning. Crucially, we implement Parallel Coordinated Reasoning (PaCoRe) to scale test-time compute, allocating resources to scalable perceptual reasoning that explores and synthesizes diverse visual hypotheses. Consequently, despite its compact 10B footprint, STEP3-VL-10B rivals or surpasses models 10$\times$-20$\times$ larger (e.g., GLM-4.6V-106B, Qwen3-VL-235B) and top-tier proprietary flagships like Gemini 2.5 Pro and Seed-1.5-VL. Delivering best-in-class performance, it records 92.2% on MMBench and 80.11% on MMMU, while excelling in complex reasoning with 94.43% on AIME2025 and 75.95% on MathVision. We release the full model suite to provide the community with a powerful, efficient, and reproducible baseline.
Abstract:Graph generative diffusion models have recently emerged as a powerful paradigm for generating complex graph structures, effectively capturing intricate dependencies and relationships within graph data. However, the privacy risks associated with these models remain largely unexplored. In this paper, we investigate information leakage in such models through three types of black-box inference attacks. First, we design a graph reconstruction attack, which can reconstruct graphs structurally similar to those training graphs from the generated graphs. Second, we propose a property inference attack to infer the properties of the training graphs, such as the average graph density and the distribution of densities, from the generated graphs. Third, we develop two membership inference attacks to determine whether a given graph is present in the training set. Extensive experiments on three different types of graph generative diffusion models and six real-world graphs demonstrate the effectiveness of these attacks, significantly outperforming the baseline approaches. Finally, we propose two defense mechanisms that mitigate these inference attacks and achieve a better trade-off between defense strength and target model utility than existing methods. Our code is available at https://zenodo.org/records/17946102.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
Abstract:Explainable machine learning aims to strike a balance between prediction accuracy and model transparency, particularly in settings where black-box predictive models, such as deep neural networks or kernel-based methods, achieve strong empirical performance but remain difficult to interpret. This work introduces a mixture of generalized additive models (GAMs) in which random Fourier feature (RFF) representations are leveraged to uncover locally adaptive structure in the data. In the proposed method, an RFF-based embedding is first learned and then compressed via principal component analysis. The resulting low-dimensional representations are used to perform soft clustering of the data through a Gaussian mixture model. These cluster assignments are then applied to construct a mixture-of-GAMs framework, where each local GAM captures nonlinear effects through interpretable univariate smooth functions. Numerical experiments on real-world regression benchmarks, including the California Housing, NASA Airfoil Self-Noise, and Bike Sharing datasets, demonstrate improved predictive performance relative to classical interpretable models. Overall, this construction provides a principled approach for integrating representation learning with transparent statistical modeling.




Abstract:Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.